

Projeto e Instalação de carregadores de carros elétricos

Sumário

Introdução

Recarga e Infraestrutura

Padrões de recarga

Projeto de instalação

Considerações finais

Fonte: Acervo pessoal.

REFERÊNCIAS

https://pnme.org.br/biblioteca

NORMAS ABNT NBR IEC

ABNT NBR 17019 DE 04/2022 - Instalações elétricas de baixa tensão - Requisitos para instalações em locais especiais - Alimentação de veículos elétricos;

NBR - IEC62196-1 DE 05/2021 - Plugues, tomadas, tomadas móveis para veículo elétrico e plugues fixos para veículos elétricos - Recarga condutiva para veículos elétricos;

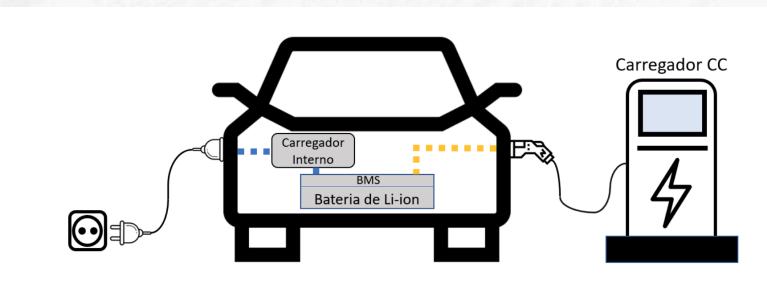
NBR - IEC62196-2 DE 05/2021 - Requisitos dimensionais de compatibilidade e de intercambiabilidade para os acessórios com pinos e contatos tubulares em corrente alternada;

IEC 62196-3 - Requisitos de compatibilidade dimensional para conectores de veículos de pino e tubo de contato CC e CA/CC;

IEC 61851-1 - Sistema de recarga condutiva para veículos elétricos - Parte 1: Requisitos gerais;

IEC 61851-21-1 - Sistema de recarga condutiva para veículos elétricos

Parte 21-1: Requisitos EMC para os carregadores embarcados no veículo elétrico para serem conectados à alimentação CA/CC;


IEC 61851-21-2 - Requisitos aplicáveis aos veículos elétricos para conexão por condução a uma alimentação em corrente alternada ou em corrente contínua - Requisitos de compatibilidade eletromagnética (EMC) para sistemas de recarga não embarcados para veículos elétricos;

IEC 61980-1:2020 - Sistemas de transferência de energia sem fio (WPT) para veículos elétricos - Parte 1: Requisitos gerais;

* ABNT NBR 14039 DE 12/2021 - Instalações elétricas de média tensão de 1,0 kV a 36,2 kV.

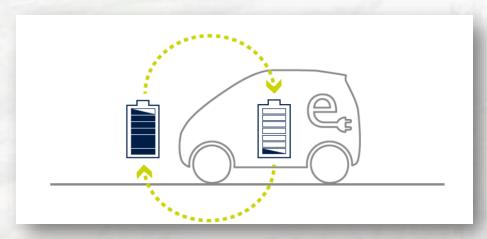
Introdução à infraestrutura de recarga

A estação de recarga de veículos elétricos (ERVE) é o dispositivo que fornece energia elétrica utilizada para efetuar a recarga dos VEs. Estes dispositivos são separados em carregadores de corrente alternada (CA) e corrente contínua (CC). Os carregadores CA normalmente são atrelados nas recargas lentas, o motivo desta característica está na necessidade do VE possuir um estágio de conversão da energia CA para CC antes da energia entrar na bateria do veículo.

CONDUTIVA

Fonte: acervo pessoal.

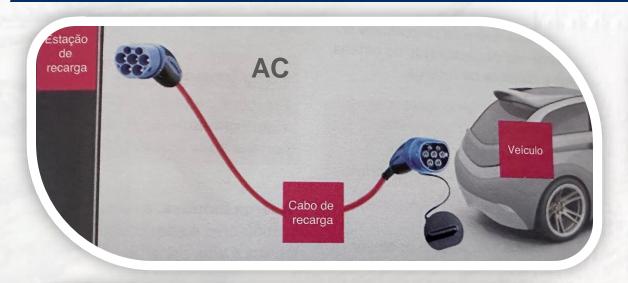
INDUTIVA

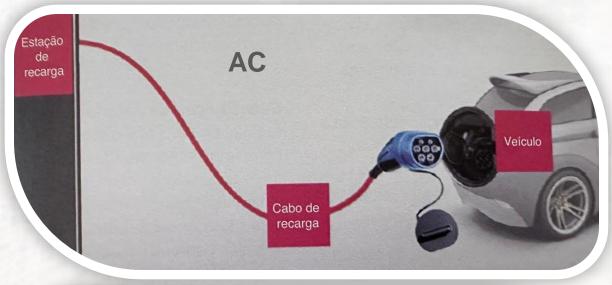


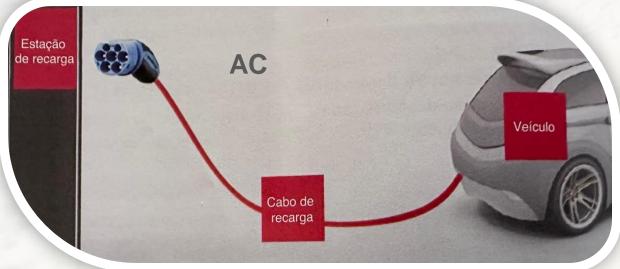
PANTOGRÁFICA

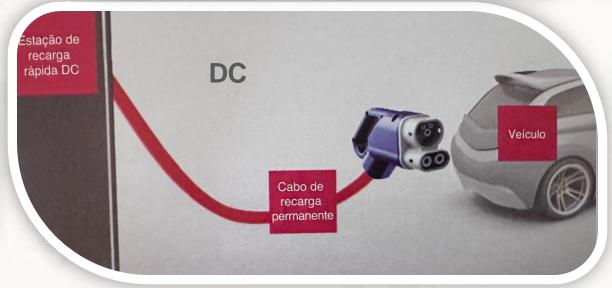
https://insideevs.com/news/339166/new-flyer-joins-oppcharge-overhead-bus-charging/

BATTERY SWAP – TROCA DE BATERIAS

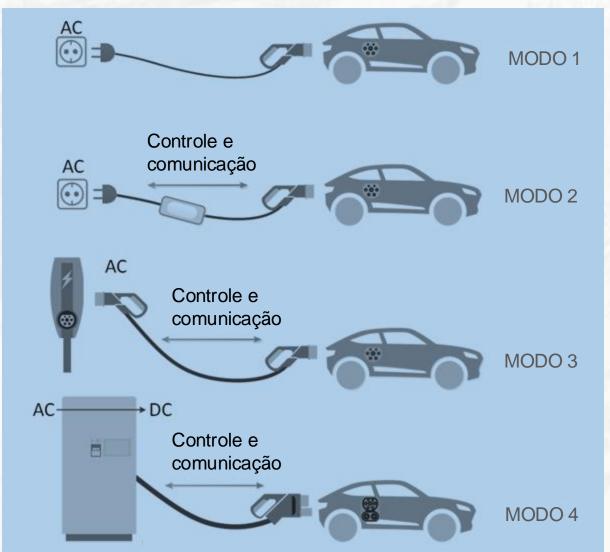


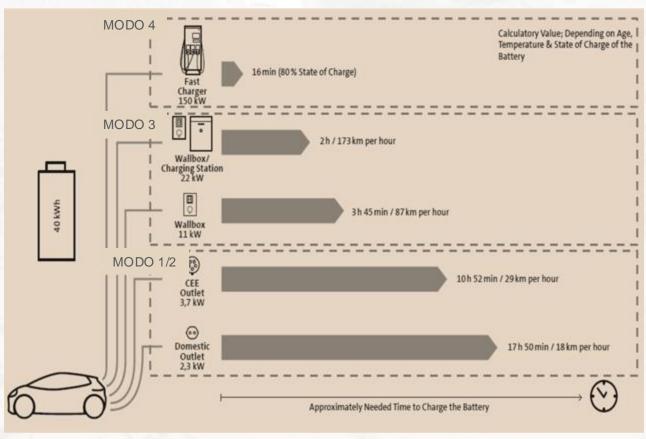

Carregamento bidirecional:


V2G, V2H, V2X



Fonte: Acervo pessoal.





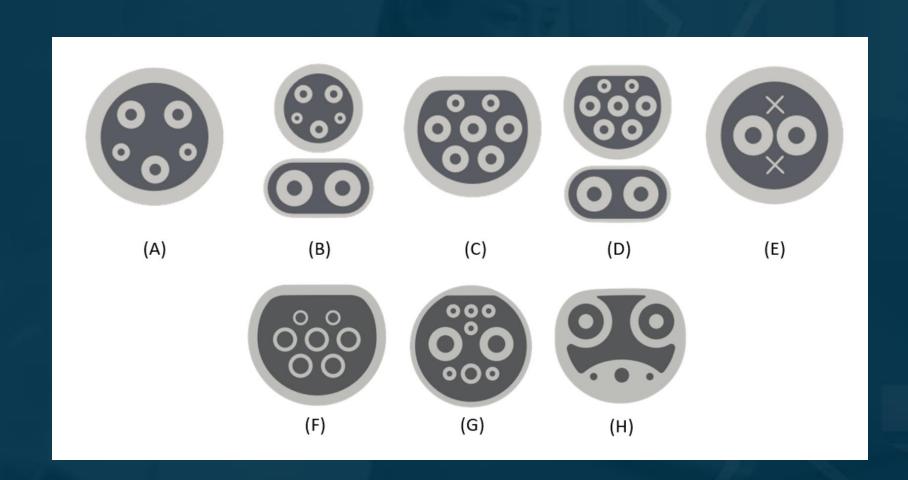
Fonte: Denton, T. Veículos Elétricos e híbridos; Tradução de Jorge Augusto Pressatto Mondadori. São Paulo. Ed. Blucher, 2018.

Modos de Carregamento

Fonte: Volkswagen

Tipos de Plugue

Tipos de Plugue



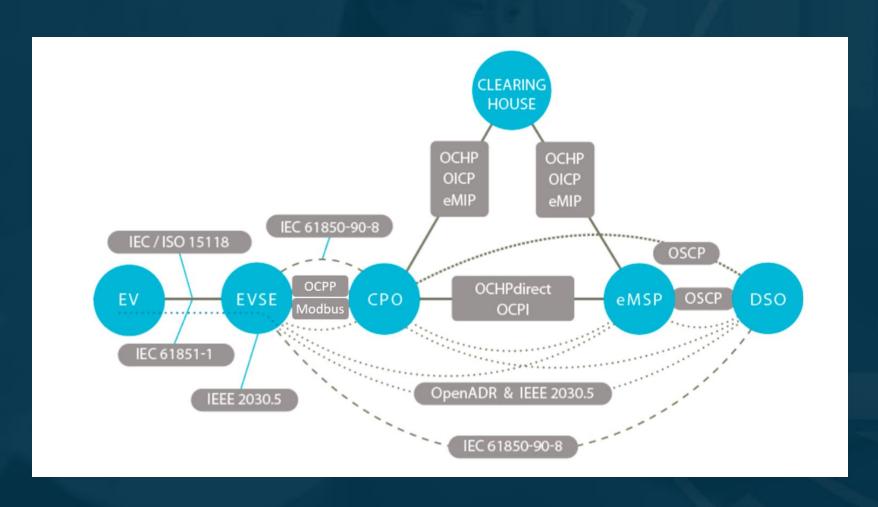
Comparativo dos plugues de carregamento

A – Tipo 1

B - CCS Tipo 1

C – Tipo 2

D – CCS Tipo 2


E - CHADEMO

F – GB/T AC

G – GB/T DC

H - Tesla

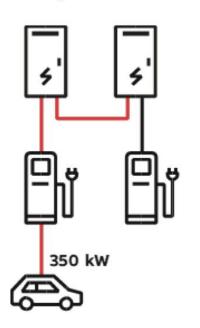
Protocolos de Comunicação

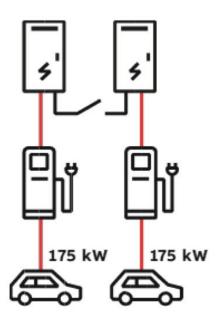
Tempos estimados de recarga

Tempo de recarga para autonomia de 100 km	Fonte de potência	Potência	Tensão	Corrente máxima
6-8 horas	Monofásica	3,3 kW	230 V AC	16 A
3-4 horas	Monofásica	7,4 kW	230 V AC	32 A
2-3 horas	Trifásica	11 kW	400 V AC	16 A
1-2 horas	Trifásica	22 kW	400 V AC	32 A
20-30 minutos	Trifásica	43 kW	400 V AC	63 A
20-30 minutos	Corrente contínua	50 kW	300-500 V DC	100-125 A
10 minutos	Corrente contínua	120 kW	400-500 V DC	300-350 A
5-10 minutos	Corrente contínua	175 kW	400-500 V DC	375 A
5-10 minutos	Corrente contínua	350 kW	400-500 V DC	500 A

Fonte: Denton, T. Veículos Elétricos e Híbridos. Ed. Blucher – Sistema Fiep SENAI, 2018.

Para saber qual a potência Ac um modelo de carro elétrico carrega, acesse:


https://www.neocharge.com.br/guia-carroeletrico-brasil



Tempos estimados de recarga

Compartilhamento de potência Dynamic DC ilustrado

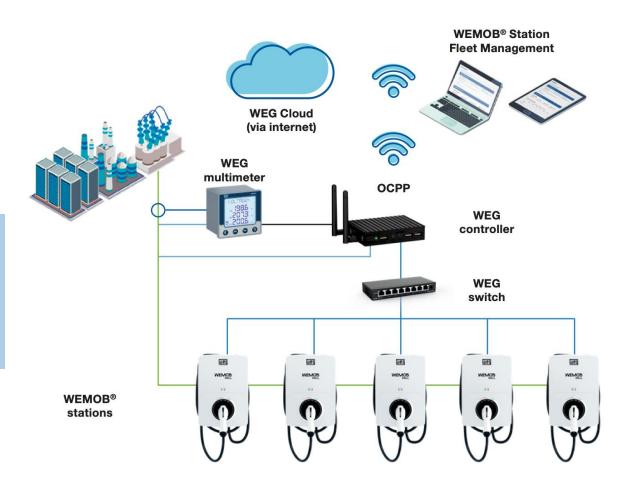
Recarga de alta potência até 350 kW e 500 A.

Recarga simultânea com até 175 kW e 375 A em cada posto de carga.

Instalação da infraestrutura de recarga

Instalação da infraestrutura de recarga

NBR 17019/2022


As estações de **recarga para veículos elétricos** destinadas ao público devem ser projetadas visando o fácil acesso ao ponto de recarga, além de estarem sinalizadas adequadamente. Ainda de acordo com a NBR 17019:2022, o **veículo elétrico pode ser utilizado como fonte de reserva**. Porém, o texto traz observações:

- A definição de fonte de reserva de acordo com a NBR 5410 é a seguinte: alimentação ou fonte que substitui ou complementa a fonte normal;
- Para a utilização do veículo elétrico como fonte de reserva recomenda-se que seja consultado o fornecedor do veículo:
- A utilização do veículo elétrico como fonte de reserva não dispensa o atendimento aos regulamentos de órgãos públicos, autoridades reguladoras e empresas distribuidoras de eletricidade.

Além disso, no caso em que os veículos elétricos se destinem a realimentar a instalação elétrica, os requisitos da **IEC 60364-8-2** são aplicáveis. A norma ainda orienta que seja instalado no quadro de distribuição um DR (disjuntor residual) visando a segurança dos usuários.

Condomínios

Por enquanto, somente na cidade de São Paulo através do PL 01-00346/17, que foi sancionado em 31 de março de 2021, tornou-se **obrigatório para os novos condomínios residenciais e comerciais** disponibilizarem tomadas para carros elétricos e híbridos nas garagens, com **medição independente de consumo**, não afetando os condomínios já existente.

Muito Obrigada!

Prof. Luciane Neves lucianecanha@ufsm.br

Apoio:

